
page 1 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through
Counterfeit Comms:
Using and abusing built-in
functionality to own a PLC
PREPARED BY JARED RITTLE AND PATRICK DESANTIS

Updated October 2, 2018

page 2 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

TABLE OF CONTENTS
Executive Summary..3

Introduction..3

Taking Over the MicroLogix 1400... 4

MicroLogix 1400... 4

Communications..4

Base Configuration..4

Methodology... 5

Impact...9

Mitigation..9

Snort Coverage...9

References.. 10

Appendix A - PCCC CMD/FNC Code Quick Reference.. 11

Appendix B - PCCC File Type Quick Reference.. 12

Appendix C - Protocol Control Byte Bitfield... 13

Appendix D - Programming Routine... 14

page 3 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

EXECUTIVE SUMMARY
Programmable Logic Controllers (PLCs) are devices that
factories, office buildings, and other facilities use to control
the manufacturing processes running in their environment.
Until recently, many PLCs have had a common problem:
unauthenticated communications. These devices were
designed to be reliable, but they were not built to protect
against malicious actors.

Security researchers at Cisco Talos conducted an analysis
of the Allen-Bradley MicroLogix 1400 PLC, resulting in
the discovery of several vulnerabilities. All discovered
vulnerabilities were disclosed to Rockwell Automation, the
creator of the MicroLogix 1400, in accordance with Cisco’s
vulnerability disclosure policy on Sept. 25, 2017 and were
patched in firmware version 21.004 on March 28, 2018. By
leveraging a handful of these vulnerabilities, we show that it is
possible to remotely program new firmware onto a MicroLogix
1400 PLC running firmware version 21.003 or below.

When a MicroLogix 1400 PLC is patched to firmware version
21.000 or above, the device is left in a state where a service
critical to the firmware update process, the Simple Network
Management Protocol (SNMP), is disabled and the CPU is set
to a remote management mode referred to as REMOTE PROG.
Before the PLC can be programmed with new firmware, it is
necessary that SNMP be enabled.

We leveraged documented “Write” commands to make
modifications to the system file responsible for controlling
system service states (TALOS-2017-0443) on devices running
firmware 21.003 and older. With SNMP fully enabled, the
next step was to power cycle the device. Since there is no
documented way to perform this action on a MicroLogix
1400, we searched for and discovered a way to crash the
device, causing a reboot in the process (TALOS-2017-0440).
Due to the state in which this crash placed the PLC, all
changes made using TALOS-2017-0443 were wiped away,
forcing us to search for a way to store the changes through
a device power cycle. A way to store this configuration was
discovered through a combination of setting the device
to load its program from an installed memory module
(TALOS-2017-0443) and then writing the program to that
memory module (TALOS-2017-0444). With the configuration
written to persistent memory, it was possible to then leverage
TALOS-2017-0440 to reboot the device, leaving it in a state
prepped for a firmware update.

With the necessary services enabled, we modified a valid
firmware file to display “HACKED” instead of “REMOTE” when

the device was placed into a specific CPU state. This can be
done as long as the sum of all changes made to the firmware
image equals zero, as the only error checking implemented is
a checksum. The modified firmware file was then programmed
to the device using its built-in update functionality, leveraging
a combination of SNMP and the Trivial File Transfer Protocol
(TFTP), after which the PLC successfully displayed our
modified state title.

The ability to remotely program a PLC with modified firmware
gives an attacker the ability to control the actions that the
device performs, as well as the output that it displays. At this
point, the user has to take action to protect against these
kinds of attacks, as the device cannot be trusted any longer.

Users should follow these directions in order to mitigate the
vulnerabilities we discovered over the course of this project.
First, ensure that the MicroLogix 1400 has been updated to
firmware version 21.004 or later. This firmware update fixes
the vulnerabilities described in this paper.

To help harden the device against potential future
vulnerabilities, the user can take specific hardening steps.
Users should ensure that the device is placed into the RUN
keyswitch mode when it is not being programmed. Additionally,
if a memory module is installed on the device place it into
Write-Protect mode, permanently preventing future remote
write access to the memory module. Next, ensure that proper
network segmentation is in place to prevent unauthorized
systems and users from accessing control systems. Finally,
enable rules 44419 - 44429 in the SNORT® Intrusion Detection
and Prevention System to detect and alert on network traffic
attempting to exploit these vulnerabilities.

INTRODUCTION
Process logic surrounds us in everyday life. Factories rely on
it to build products, and critical infrastructure and utilities rely
on it to keep necessary resources available to everyone. We
rely on these processes and others like them to produce this
year's favorite toy, keep us comfortable at work, and ensure
that the lights stay on. But what if these processes failed?
What if production of this year's toy was halted right before the
Christmas rush? Or the electric company couldn't supply enough
power to the neighborhood? These processes are part of what
give us our quality of life, and they need to be protected.

However, PLCs, which rely on process logic, aren't necessarily
secure from attackers. This was not always viewed as a
problem, since the only way to communicate with a PLC was

page 4 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

by physically connecting to its serial interface. Since then,
our communication networks have expanded, and Ethernet
ports have been added . With these changes, PLCs are being
connected to the internet to allow for easier control for both
legitimate operators and malicious actors.

As part of the “Advanced Persistent Thirst” project, security
researchers at Cisco Talos conducted an analysis of the
Allen-Bradley MicroLogix 1400 PLC, resulting in the discovery
of hard-coded SNMP credentials. We continued our analysis of
this device and discovered several additional vulnerabilities,
including device fault states, unauthenticated file access, and
the mishandling of invalid data. The CVEs below were patched
in firmware version 21.004 on March 28, 2018. All discovered
vulnerabilities were responsibly disclosed to Rockwell
Automation in accordance with Cisco’s vulnerability disclosure
policy on Sept. 25, 2017.

•	 CVE-2017-12088

•	 CVE-2017-12089

•	 CVE-2017-12090

•	 CVE-2017-12092

•	 CVE-2017-12093

•	 CVE-2017-14462

•	 CVE-2017-14463

•	 CVE-2017-14464

•	 CVE-2017-14465

•	 CVE-2017-14466

•	 CVE-2017-14467

•	 CVE-2017-14468

•	 CVE-2017-14469

•	 CVE-2017-14470

•	 CVE-2017-14471

•	 CVE-2017-14472

•	 CVE-2017-14473

Throughout this report, we will walk through the methodology
used while working with the MicroLogix 1400 and explain
several of the vulnerabilities discovered along the way. We will
show how it is possible to take a handful of vulnerabilities,
some seemingly harmless, and chain them together to enable
protected system services. We will then go a step further
and discuss how we can leverage the newly enabled system
services, along with an unpatched vulnerability to remotely
program modified firmware onto a MicroLogix 1400.

TAKING OVER THE MICROLOGIX 1400
During our research, we discovered several vulnerabilities in
the MicroLogix 1400 that allow a malicious actor to remotely
configure, control, modify, and even disable the device. By
leveraging several of these vulnerabilities in conjunction with
documented and undocumented functionality, we were able
to take a target device running the latest firmware at the time,

starting from its post-update state and program it with modified
firmware, demonstrating how dangerous a chain of seemingly
harmless vulnerabilities can be, while showing the potential risks
of connecting control systems to untrusted networks.

MICROLOGIX 1400

The MicroLogix line of PLCs from Rockwell Automation’s
Allen-Bradley are designed and built for use in a wide range of
micro applications in industries such as such as printing, food
and beverage processing, and waste water treatment. The
MicroLogix 1400 contains a range of features and capabilities,
which include an onboard input and output (I/O) module, a
built-in LCD display, and remote configuration capabilities.

When PLCs are integrated into a control system, they are
responsible for maintaining the physical processes conducted
within that system. If a PLC is forced offline, or the device
configuration is modified, the physical process that it
controls can fail, potentially leading to disruption of service or
destruction of equipment.

COMMUNICATIONS

Communication with the MicroLogix 1400 can be configured
and controlled via its serial or Ethernet interfaces. Allen-
Bradley’s DF1 protocol is commonly used to conduct serial
communication. When interacting with the device over
its Ethernet interface, communication is supported over
multiple different protocols, the most common of which is
EtherNet/IP (ENIP) used to transmit Programmable Controller
Communication Commands (PCCC) to and from the PLC.

ENIP is a TCP implementation of the Common Industrial
Protocol (CIP) used most commonly in Allen-Bradley
products. The protocol contains numerous methods
of transmitting data, with the two most common being
Connected and Unconnected Messages. Details regarding
the protocol are publicly available within the “Communicating
with RA Products using EtherNet/IP Explicit Messaging” and
“EtherNet/IP Adaptation of CIP” documents.

PCCC commands are application-layer instructions
transmitted to a device using any supported transmission
protocol (usually DF1 or ENIP). All commands follow a
structured format of command and function code pairs
alongside any necessary data to trigger a specified logical
operation on the device. Specification details for most of the
command structure can be found in the “Allen-Bradley DF1
Protocol and Command Set” document.

page 5 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

DEVICE CONFIGURATION

Our device was set up to match a set of configurations similar
to what may be found in the field. The latest firmware update
at the time, version 21.003, was applied to the target device
to ensure that it used the default configuration and contained
the latest security protections. Among these security
protections is the disabling of a system service necessary
for programming the device firmware: the Simple Network
Management Protocol (SNMP). As most devices updated to
the newest firmware would not have this setting enabled, it
was left disabled on the target device.

The first configuration change was made to the PLC’s
keyswitch mode. Most PLCs contain a keyswitch that provides
physically present operators the ability to change the state of
the device's CPU. By doing so, the operator can quickly control
the type of actions that are authorized to be performed on
the device at that point in time. It is important to note that
on most PLCs, the keyswitch state can only be modified by
physically interacting with the device.

On the MicroLogix 1400, three keyswitch states are possible:
RUN, PROG, and REMOTE. RUN is an execution mode that
allows the device to run its program, but does not allow
for modification of device settings or logic. This is the
recommended mode for all PLCs as it severely reduces the
number of actions that can be remotely performed on the
device. PROG is a programming mode that allows for updates
to be made to both the device configuration and its logic.
While in this mode the PLC is not running through its program.
REMOTE is a programming and execution mode that blends
the RUN and PROG modes.

The REMOTE keyswitch mode is of particular interest, as it
contains various sub-states that can be remotely changed.
The two most notable of these sub-states are REMOTE RUN
and REMOTE PROG. Placing the device into either of these two
sub-states makes the CPU respond similarly to RUN or PROG
mode while also providing additional functionality, which
allows for remote state switching and communication.

The installation of an external memory module was the final
modification that needed to be made to the target device
before launching the attack. The MicroLogix 1400 PLC
contains onboard memory that allows it to store its program,
but if an error occurs that triggers the device to wipe that
program, such as a corrupted download or certain fault states,
the device’s logic program will be lost forever. To solve this
problem, the MicroLogix 1400 supports an optional memory
module on which a user program can be stored.

These required configuration states can be found summarized
in Table 1. The settings that have been modified from their
default configuration have been highlighted.

METHODOLOGY

The SNMP service must be enabled for new firmware to be
programmed to the device. Prior to firmware version 21.000,
SNMP was enabled by default. In version 21.000, however, the
vendor chose to disable this service as a security precaution.
Due to this configuration, our first target became finding a
way to enable the SNMP service.

To better understand the service state modification process,
we analyzed the process used by the vendor's discovery,
configuration, and programming software applications —
RSLinx and RSLogix — to achieve the same goal. To enable
the desired service in RSLogix, a user must enter the “Channel

Table 1: Device Configuration

Configuration Option State

Device MicroLogix 1400 Series B

CPU State REMOTE RUN

SNMP Disabled
(default after FRN 21)

Memory Module Installed w/o Write-Protect

ENIP Enabled (default)

Firmware Version 21.003 or below

Figure 1: RSLogix channel configuration

page 6 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

Configuration File,” navigate to Channel 1, and mark the service
as “enabled,” as shown in Figure 1. At this time, the service has
not yet been fully enabled, as the device requires that a system
reboot occur before the change can fully take effect.

As with many applications, there is an excessive amount
of information to process when looking at this traffic in
Wireshark, a network protocol analyzer. To help analyze this
network traffic, we decided to filter out only the packets issued
when RSLogix enables SNMP. We used RSLogix to send two
legitimate Change Mode commands as markers, as there is not
any built-in way to determine what this network traffic is. We
were able to watch where our markers appeared in the network
traffic and thereby reduce our window to a size that could be
reasonably analyzed by issuing these marker commands to
place the CPU into REMOTE PROG mode before enabling SNMP,
and returning it to REMOTE RUN mode immediately after.

With a more manageable set of packets, we continued filtering
out unnecessary commands, such as any responses from
the PLC, any polling commands requesting diagnostics, and
any commands issuing a “Read” of data from the device.
This filtering left us with only commands issuing a “Write”
operation from RSLogix to the device, but it still was too much
information to properly analyze. We noticed in the network
traffic that most of the packets were the same size. Thinking
that, at most, a few commands should have been sent, we
focused on groupings of packets with the least common length
and found one that contained the device’s IP address. We
knew we were on the right track since the IP address is another
parameter contained within the “Channel Configuration File.”

Further analysis of the network traffic revealed that there are
two “Write” commands sent to the “Channel Configuration File”
performed by RSLogix, each to a different part of the file. Two
“Write” commands are necessary as the maximum amount
of data that can be written to a file in one operation is 0x50
bytes. By comparing the combined file contents against similar

runs where only system services were modified, we were able
to determine that a single byte, hereafter called the “Protocol
Control Byte,” controlled the state of all services.

With this information, we implemented a PCCC command
similar to that used by RSLogix. When we sent this command,
the PLC responded with an error code signaling that the
command was invalid.

There were two additional bytes contained in the RSLogix Write
network traffic that changed when modifications were made
to any element of the “Channel Configuration File.” Testing
revealed that a CRC-16 calculation was being performed on
bytes 0x00-0x85 of the “Channel Configuration File” and placed
into bytes 0x86-0x87. This breakdown can be seen in Figure 2.

We were able to successfully use a “PCCC Protected Typed

Figure 2: Channel Configuration File CRC Figure 3: Example of a PCCC-protected typed logical write with three
address fields command.

Figure 4: MicroLogix 1400 SNMP state

page 7 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

Logical Write with Three Address Fields” command to start
the process of enabling SNMP (TALOS-2017-0443) by
calculating a new CRC after updating the “Protocol Control
Byte” and replacing the old CRC value. An example of this
command is shown in Figure 3. When this is done, the change
shown in Figure 4 will appear in the device’s protocol settings.

With the “Channel Configuration File” updated, our next
goal was to find a way to force the device to power cycle.
The MicroLogix 1400 does not have a documented method
of triggering a system reboot, so we started looking for
commands where one is conducted as a result of another
operation.

This search brought us to the standard firmware update
process. When the firmware on a MicroLogix 1400 is being
updated through the vendor’s ControlFLASH software, the
device reboots, enters a state informing the user that a
programming operation is occurring, and reboots again to
enter the normal state. We were able to capture and analyze
the full details of the process.

There are three SNMP commands that get sent to the device
when the device’s firmware updates. The first two commands
are used to configure information about the updated server,
but the third is used to indicate to the device that it can start
its update. If this third command is sent without either of the
preceding two commands, the device will trigger its power cycle
and start the firmware update process. Since there is no update
server specified, the device cannot conduct the operation and
restarts into the normal state (TALOS-2017-0442).

With this technique, we were successfully able to fully enable
any service as long as SNMP is already enabled. If SNMP is
not already enabled, however, this system reboot method
cannot be conducted as it relies on that protocol.

We decided to take an approach inspired from an attempted
attack on the Talos Advanced Persistent Thirst project at

DerbyCon 6.0 and fuzz the device with random data. When we
started piping a stream of random values across an Ethernet
connection to the device on port 44818, we had little hope
that anything would happen. After a few minutes, however, the
device entered a fault state and rebooted. Repeated analysis
and replay of the network traffic revealed a single packet that
consistently triggered the device to go through this process
(TALOS-2017-0440). After testing different variations of
this packet, we determined that only a small portion of it is
necessary. This packet is shown in Figure 5.

This power cycle method did not require SNMP to be enabled
like the prior one, so it initially seemed to be a solution to
our problem. Further investigation into what happens when
this power cycle occurs revealed that a non-user fault gets
triggered on the device. A non-user fault is a fault category
caused by conditions that make the device stop execution of
its logic, and often results in the user program getting erased
and replaced with a default program.

When a user program gets wiped, it removes all program logic
and device configuration from the device, along with any
modifications we made to the “Protocol Control Byte” with it.
To get around this problem, we started looking into how the
device loads its default program.

Investigation into the location of this default program
revealed that it is not stored in a location that can be easily
modified. It also revealed an option to instruct the device to
load its program from an installed memory module when an
error is encountered instead of loading its default program
(TALOS-2017-0443).

By installing a memory module and instructing the device to
load from that memory module on error via a PCCC command
wrapped in the device’s “Programming Routine” (See
Appendix D), we were able to get the online user program into
the desired pre-reboot state.

Figure 5: Device crash packet

page 8 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

With the user program ready, the final necessary element
was finding a way to write that program to the memory
module. We knew it was possible since this functionality was
implemented with RSLogix. Using Wireshark, we captured
and analyzed the network traffic, resulting in the discovery
of a command that will be hereafter referred to as Store
to EEPROM (TALOS-2017-0444). We could now combine
everything that we learned to fully enable SNMP on our target
device using this method.

A summarized view of the path that we took to fully enable
SNMP is shown in Figure 6.

With the initial goal of fully enabling SNMP on the target
device accomplished, the next step was to update the
firmware. To do this, we used a technique described in the
DEFCON25 talk “From Box to Backdoor: Using Old School
Tools and Techniques to Discover Backdoors in Modern
Devices” by Patrick DeSantis.

We needed to build a firmware image before the device could
be programmed. To do this, we started with a copy of the
newest firmware at the time. In the MicroLogix 1400 Series

B, the only check in place to ensure that a firmware file is
valid is a basic checksum. Since only checksum validation is
used, it is possible to make modifications to the firmware file
as long as the net sum of any changes made is zero. Using
this strategy, we created a modified copy of firmware version
21.003 where the LCD CPU state indicator of “REMOTE” was
changed to read “HACKED”, making sure to offset our changes
in other nonessential surrounding text. An example of the
modifications can be seen in Figure 7.

With the modified firmware in hand, it was time to program
it onto the device. The firmware update process on a
MicroLogix 1400 contains two main phases: a setup phase
and a programming phase. During the setup phase, three
SNMP commands are issued to the device. These commands
configure the device with an IP address from which to load the
new firmware, specify the name of the firmware file to load, and
trigger a power cycle. If done correctly, the device will reboot
and begin transferring the modified firmware from the specified
server using the Trivial File Transfer Protocol (TFTP). Once the
firmware file is fully downloaded, the device will proceed with
programming the modified firmware, as shown in Figure 8.

Patched
Device

Modify Channel
Configuration

File

Enable Load
from EEPROM

on Error

Store to
EEPROM

Crash the
device

Patched Device
with SNMP Fully

Enabled

Figure 6: Enable SNMP full attack path

Figure 7: Modifying the firmware Figure 8: Flashing modified firmware

page 9 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

When the device completes the programming process, it
triggers another power cycle and boots into the standard
operating mode. At this stage, due to the specific changes
we made it was visually apparent that the device was running
modified firmware. From this point forward, until the device is
reprogrammed, any time the device is placed into the REMOTE
keyswitch state the LCD displays “HACKED” instead. This can
be seen in Figure 9.

IMPACT

While this example demonstrates the modification of a
display element on the device, it is important to remember
that the modification was made at the firmware level. Using
the same technique that we used to modify the display it is
possible to make any desired change to the firmware as long
as the checksum remains the same. With enough work, a
malicious actor can use this ability to build valid firmware with
modifications, ranging from minor display updates like the
one shown above, to major changes of the control process.

An attacker has the ability to make the PLC do whatever they
want once they have control over its firmware. This access
allows them to make any desired modification, including but
not limited to, inserting backdoors for future access or making
the device report false information to its operators to report
incorrect states.

Once this type of access has been gained by an attacker, the
device and every status that it reports can no longer be trusted.

MITIGATION
The easiest and quickest way to prevent most of the
attacks discussed in this paper is to follow proper network
segmentation procedures, ensuring that access to the
MicroLogix 1400 and any other control systems is restricted
to only necessary systems and users.

Make sure that the most up-to-date firmware is being used. At
time of writing, that is version 21.004.

If possible, ensure that the PLC is placed into the RUN
keyswitch mode whenever it is not being programmed,

regardless of the firmware version.

If a memory module is in use, make sure to use the “Write-
Protect” feature after writing the desired program. Doing
so will permanently disable any future logical writes to the
memory module, preventing an attacker from leveraging
TALOS-2017-0444 and making it more difficult to enable
sensitive services.

It is important to note that by enabling the Write-Protect
feature, it will not be possible to make any legitimate changes
to the program stored on that module after it has been enabled.

Lastly, monitor your network for any suspicious network
traffic with an Intrusion Detection System such as Snort.
The Snort rules listed below in the “Snort Coverage” section
below can be used to alert users to many of the vulnerabilities
discussed in this article.

SNORT COVERAGE

The following Snort rules can aid in the detection of the
vulnerabilities described in this report:

•	 44419

•	 44420

•	 44421

•	 44422

•	 44423

•	 44424

•	 44425

•	 44426

•	 44427

•	 44428

•	 44429

Figure 9: Modified Firmware

page 10 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

REFERENCES

•	 Allen-Bradley Rockwell Automation. (1996, October). DF1 Protocol and Command Set. Retrieved from Rockwell Automation
Literature Library: literature.rockwellautomation.com/idc/groups/literature/documents/rm/1770-rm516_-en-p.pdf

•	 Allen-Bradley Rockwell Automation. (2001, June). Communicating wtih RA Products using EtherNet/IP Explicit Messaging.
Retrieved from Rockwell Automation Downloads: rockwellautomation.com/resources/downloads/rockwellautomation/pdf/sales-
partners/technology-licensing/eipexp1_2.pdf

•	 Allen-Bradley Rockwell Automation. (2017, March). MicroLogix 1400 Programmable Controllers User Manual. Retrieved from
Rockwell Automation Literature Library: literature.rockwellautomation.com/idc/groups/literature/documents/um/1766-um001_-
en-p.pdf

•	 Buvel, R. (n.d.). python crcmod 1.7. Retrieved from Python Software Foundation Package Index: pypi.python.org/pypi/crcmod

•	 Carnegie Mellon University. (2010, January). CVE-2009-3739. Retrieved from Vulnerability Notes Database: https://www.kb.cert.
org/vuls/id/144233

•	 Cisco. (2016, November). Vendor Vulnerability Reporting and Disclosure Policy. Retrieved from Cisco Security Center: https://
www.cisco.com/c/en/us/about/security-center/vendor-vulnerability-policy.html

•	 Cisco Talos. (2016, August). TALOS-2016-0184: AB Rockwell Automation MicroLogix 1400 Code Execution Vulnerability.
Retrieved from Talos Vulnerability Reports: https://www.talosintelligence.com/reports/TALOS-2016-0184

•	 ControlNet International and Open DeviceNet Vendor Association. (2001, June). EtherNet/IP Adaptation of CIP Specification.
Retrieved from http://read.pudn.com/downloads166/ebook/763212/EIP-CIP-V2-1.0.pdf

•	 DeSantis, P. (2017). From Box to Backdoor: Using Old School Tools and Techniques to Discover Backdoors in Modern Devices.
Retrieved from Defcon Media Server: FROM BOX TO BACKDOOR Using Old School Tools and Techniques to Discover Backdoors in
Modern Devices

•	 Liechti, C. (n.d.). pySerial. Retrieved from pySerial 3.0 Documentation: pythonhosted.org/pyserial

•	 MITRE. (2012, August). CVE-2012-4690. Retrieved from Common Vulnerabilities and Exposures: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2012-4690

•	 MITRE. (2018, January). CVE-2017-16740. Retrieved from Common Vulnerabilities and Exposures: https://cve.mitre.org/cgi-bin/
cvename.cgi?name=CVE-2017-16740

•	 plctalk.net. (2008, February). PLCTalk Message Board. Retrieved from plctalk.net/qanda/showthread.php?t=37220

•	 Rockwell Automation Allen-Bradley. (n.d.). MicroLogix 1400 Programmable Logic Controller Systems. Retrieved from Rockwell
Automation Software: https://ab.rockwellautomation.com/Programmable-Controllers/MicroLogix-1400#applications

•	 Santamarta, R., & Wightman, K. (n.d.). multi_cip_command - Metasploit Framework. Retrieved from Github: https://github.com/
rapid7/metasploit-framework/blob/master/modules/auxiliary/admin/scada/multi_cip_command.rb

•	 Tacliad, F., Nguyen, T. D., & Gondree, M. (2017, December). DoS Exploitation of Allen-Bradley’s Legacy Protocol through Fuzz
Testing. Retrieved from https://www.gondree.com/pdfs/tacliad_icss_17.pdf

page 11 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

Table 2: Relevant PCCC CMD/FNC Code

CMD FNC Description

0x06 0x03 Request Diagnostics

0x0F 0x11 Get Edit Resource

0x0F 0x12 Return Edit Resource

0x0F 0x52 Download Complete

0x0F 0x58 Store to EEPROM

0x0F 0x80 Change Mode

0x0F 0x88 Execute Command List

0x0F 0x8F Apply Port Configuration

0x0F 0xA2 Protected Typed Logical Read with Three Address Fields

0x0F 0xAA Protected Typed Logical Write with Three Address Fields

APPENDIX A - PCCC CMD/FNC CODE QUICK REFERENCE
Command and function codes referenced in Table 2 below were extracted from the Allen-Bradley “DF1 Protocol and Command Set”
document, as well as online resources.

page 12 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

Table 3: PCCC File Type Quick Reference

File Name File Type Common File Number

Unknown, but useful 0x00 0x00

Unknown, but useful 0x01 0x00

Unknown, but useful 0x02 0x00

Unknown, but useful 0x03 0x00

Ladder Logic File 0x22 0x02

Function File - CS0 & CS2 0x48 0x00

Channel Configuration File 0x49 0x01

Function File - ES1 0x4A 0x01

Online Edit File 0x65 0x00

Function File - IOS 0x6A 0x00

Data File - OUTPUT 0x82 0x00

Data File - INPUT 0x83 0x01

Data File - STATUS 0x84 0x02

Data File - BINARY 0x85 0x03

Data File - TIMER 0x86 0x04

Data File - COUNTER 0x87 0x05

Data File - CONTROL 0x88 0x06

Data File - INTEGER 0x89 0x07

Data File - FLOAT 0x8A 0x08

Force File - OUTPUT 0xA1 0x00

Force File - INPUT 0xA2 0x01

Function File - ES0 0xE0 0x00

Function File - STI 0xE2 0x03

Function File - EII 0xE3 0x00

Function File - RTC 0xE4 0x00

Function File - BHI 0xE5 0x00

Function File - MMI 0xE6 0x00

Function File - LCD 0xEC 0x00

Function File - PTOX 0xED 0x00

Function File - PWMX 0xEE 0x00

APPENDIX B - PCCC FILE TYPE QUICK REFERENCE
File type and number mappings referenced in Table 3 were pulled from a combination of the Allen-Bradley “DF1 Protocol and
Command Set” document, as well as our own analysis of communications.

page 13 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

APPENDIX C - PROTOCOL CONTROL BYTE BITFIELD
When attempting to change the state of a service on the MicroLogix 1400, an update to the “Channel Configuration File” is required.
Within the data section of this file there is one byte, referred to as the “Protocol Control Byte” that determines the state of each of
the supported services. This byte served as a bitfield, with each bit representing the state of a particular service. Table 4 provides a
breakdown of the bit to service mapping that is implemented in the MicroLogix 1400 PLC.

Table 4: Protocol Control Byte

7 6 5 4 3 2 1 0

ENIP Unknown ModbusTCP DNP3 Unknown SMTP SNMP HTTP

page 14 of 14© 2018 Cisco. All rights reserved. talos-external@cisco.com | talosintelligence.com

Process Control through Counterfeit Comms

Table 5: Execute Command List

When attempting to perform certain commands, an error
is encountered that indicates that the necessary privileges
were not met. Investigation uncovered that this error
comes from not having supplied the proper sequence of
instructions before and after attempted execution of a desired
command. This sequence will hereafter be referred to as
the “Programming Routine.” To successfully go through the
“Programming Routine,” the device must be in the REMOTE
keyswitch mode.

To initiate a “Programming Routine,” the following three setup
commands must be successfully executed: “Change Mode
- REMOTE PROG,” “Execute Command List,” and “Get Edit
Resource.”

Once all three setup commands have been successfully
executed, the desired commands can be run. There does not
appear to be any limit on the number of commands sent as
long as they are all within the same session.

After all desired commands have been successfully received,
the following commands must be executed to ensure that
all changes are saved: “Download Completed,” “Apply Port
Configuration,” “Return Edit Resource” and, optionally,
“Change Mode - REMOTE RUN.”

All of these commands are well documented within the
“DF1 Protocol Command Set” manual, except for “Execute
Command List.” A potential breakout and example packet for
the “Execute Command List” command is shown in Table 5.
This information was obtained from discussion on a PLCTalk
forum, as well as our own internal analysis.

When properly executed, the structure of the “Programming
Routine” should follow the order laid out below.

1.	 Change Mode - REMOTE PROG

2.	 Execute Command List

3.	 Get Edit Resource

4.	 Any Commands That Require the Routine

5.	 Download Completed

6.	 Apply Port Configuration

7.	 Return Edit Resource

8.	 Change Mode - REMOTE RUN (optional)

If no errors are encountered along the way, the desired changes
should be reflected on the device. It is important to note that
this method is not required for all commands. Even commands
that do not require it can still be run within the routine.

CMD STS TNS FNC Number of FNCs FNC 1 Length FNC1 FNC1 Data FNC 2 Length FNC 2

0F 00 - - 88 02 0C AA See breakout below 01 56

Byte
Size

File
Number

File
Type

Element
Number

Sub Element
Number Address 1 Address 2 Address 3

06 00 63 00 00 0C 91 00 00 83 F1

APPENDIX D - PROGRAMMING ROUTINE

	Executive Summary
	Introduction
	Taking Over the MicroLogix 1400
	MicroLogix 1400
	Communications
	Base Configuration
	Methodology
	Impact

	Mitigation
	Snort Coverage

	References
	Appendix A - PCCC CMD/FNC Code Quick Reference
	Appendix B - PCCC File Type Quick Reference
	APPENDIX C - PROTOCOL CONTROL BYTE BITFIELD
	Appendix D - Programming Routine

